Does data cleaning improve brain state classification?

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Why Does Synthesized Data Improve Multi-sequence Classification?

The classification and registration of incomplete multi-modal medical images, such as multi-sequence MRI with missing sequences, can sometimes be improved by replacing the missing modalities with synthetic data. This may seem counter-intuitive: synthetic data is derived from data that is already available, so it does not add new information. Why can it still improve performance? In this paper w...

متن کامل

Training Data Cleaning for Text Classification

In text classification (TC) and other tasks involving supervised learning, labelled data may be scarce or expensive to obtain; strategies are thus needed for maximizing the effectiveness of the resulting classifiers while minimizing the required amount of training effort. Training data cleaning (TDC) consists in devising ranking functions that sort the original training examples in terms of how...

متن کامل

Data Cleaning for Classification Using Misclassification Analysis

In most classification problems, sometimes in order to achieve better results, data cleaning is used as a preprocessing technique. The purpose of data cleaning is to remove noise, inconsistent data and errors in the training data. This should enable the use of a better and representative data set to develop a reliable classification model. In most classification models, unclean data could somet...

متن کامل

Statistical Machine Learning in Brain State Classification using EEG Data

In this article, we discuss how to use a variety of machine learning methods, e.g. tree bagging, random forest, boost, support vector machine, and Gaussian mixture model, for building classifiers for electroencephalogram (EEG) data, which is collected from different brain states on different subjects. Also, we discuss how training data size influences misclassification rate. Moreover, the numbe...

متن کامل

Does data splitting improve prediction?

Data splitting divides data into two parts. One part is reserved for model selection. In some applications, the second part is used for model validation but we use this part for estimating the parameters of the chosen model. We focus on the problem of constructing reliable predictive distributions for future observed values. We judge the predictive performance using log scoring. We compare the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Neuroscience Methods

سال: 2019

ISSN: 0165-0270

DOI: 10.1016/j.jneumeth.2019.108421